Show simple item record

dc.contributor.authorBhattacharya B
dc.contributor.authorHughes G
dc.date.accessioned2015-07-23T14:03:14Z
dc.date.available2015-07-23T14:03:14Z
dc.date.issued2015
dc.identifier.citation103en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.spl.2015.04.003
dc.identifier.urihttp://hdl.handle.net/11262/10801
dc.description.abstractWe present formal definitions of two commonly observed asymmetries in a concave receiver operating characteristic curve. The main theorem of the paper proves that the Kullback– Leibler divergences between the underlying signal and noise variables are ordered based on these asymmetries. This result is true for any continuous distributions of the signal and noise variables. © 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.isformatof14065en_US
dc.relation.ispartofStatistics and Probability Lettersen_US
dc.subjectAsymmetryen_US
dc.subjectKullback-Leibler divergenceen_US
dc.subjectEntropyen_US
dc.subjectRelative distributionsen_US
dc.subjectROCen_US
dc.titleOn shape properties of the receiver operating characteristic curveen_US
dc.typeArticleen_US
dc.extent.pageNumbers73en_US
dc.extent.pageNumbers79en_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record