Show simple item record

dc.contributor.authorScholz AM
dc.contributor.authorBunger L
dc.contributor.authorKongsro J
dc.contributor.authorBaulain U
dc.contributor.authorMitchell AD
dc.date.accessioned2015-04-24T08:44:56Z
dc.date.available2015-04-24T08:44:56Z
dc.date.issued2015
dc.identifier.citation9:7
dc.identifier.urihttp://dx.doi.org/10.1017/S1751731115000336
dc.identifier.urihttp://hdl.handle.net/11262/10703
dc.description.abstractThe ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound – US), ‘photon’ radiation (X-ray-computed tomography – CT, dual-energy X-ray absorptiometry – DXA) or radio frequency waves (magnetic resonance imaging – MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach.en_US
dc.language.isoenen_US
dc.relation.isformatof13960en_US
dc.relation.ispartofAnimalen_US
dc.rightsCopyright © The Animal Consortium 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.subjectAnimalen_US
dc.subjectBody compositionen_US
dc.subjectX-ray attenuationen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectUltrasounden_US
dc.titleNon-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited reviewen_US
dc.typeArticleen_US
dc.description.versionVersion of record
dc.extent.pageNumbers1250
dc.extent.pageNumbers1264


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record