
Copyright © American Dairy Science Association®, 2016.

This manuscript version is made available after the end of the 12 month embargo period under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://hdl.handle.net/11262/11077
http://dx.doi.org/10.3168/jds.2015-10789
Interpretive Summary

The genetic parameters of subclinical hypocalcemia, hypophosphatemia, subclinical hypomagnesemia, hypokalemia and hyperphosphatemia during the first 8 days after calving were studied in Holstein dairy cows. Repeated measurements of calcium, phosphorus, magnesium and potassium serum concentrations together with recordings of clinical diseases during the same period were used in random regression model analyses. The heritability estimates of the associated health traits suggest that genetic selection is feasible and could help minimize health problems after calving.
ABSTRACT

The main objective of this study was to assess the genetic parameters of subclinical disorders associated with subclinical hypocalcemia (SCHCa), hypophosphatemia (HypoP), subclinical hypomagnesemia (SCHMg), hypokalemia (HypoK) and hyperphosphatemia (HyperP), as well as of major clinical diseases after calving in Holstein cows. The secondary objective was to estimate the associated genetic and phenotypic correlations among these subclinical and clinical conditions after calving in Holstein cows. The study was conducted in 9 dairy herds located in Northern Greece. None of the herds used any kind of preventive measures for milk fever (MF).

A total of 1,021 Holstein cows with pedigree information were examined from November 2010 until November 2012. The distribution across parities was 466 (parity 1), 242 (parity 2), 165 (parity 3) and 148 (parity 4 and above) cows. All cows were subjected to a detailed clinical examination and blood sampled on the 1st, 2nd, 4th and 8th day after calving. Serum concentrations of Ca, P, Mg and K were measured in all samples, while β-hydroxybutyrate acid (BHBA) was measured only for day 8. The final data set included 4,064 clinical and 16,848 biochemical records (4,020 Ca, 4,019 P, 4,020 Mg and 3,792 K and 997 BHBA). Data of 1,988 observations of Body Condition Score (BCS) at days 1 and 8, were also available. All health traits were analyzed with a univariate random regression model. The genetic analysis for macromineral-related disorders included 986 cows with no obvious signs of MF (35 cows with MF were excluded). Analysis for other health traits included all 1,021 cows. A similar single record model was used for the analysis of BHBA. Genetic correlations among traits were estimated with a series of bivariate analyses. Statistically significant daily heritabilities of SCHCa (0.13 – 0.25), HypoP (0.18 – 0.33), SCHMg (0.11 – 0.38) and HyperP (0.14 – 0.22) were low to moderate, while that of HypoK was low (0.08 – 0.10). The heritability of BCS was 0.20±0.10. Statistically
significant daily heritabilities of clinical diseases were those of MF (0.07 – 0.11), left displaced abomasum (0.19 – 0.31) and mastitis (0.15 – 0.41). Results suggest that these health disorders are heritable traits and could be minimized with proper genetic selection. Statistically significant phenotypic correlations were estimated for the first time between macromineral concentrations and almost all transition cow metabolic and infectious health disorders.

Key words: subclinical macromineral disorders, postpartum diseases, genetic parameters

INTRODUCTION

During the transition period (3 weeks before to 3-4 weeks after calving) the modern high producing dairy cow is at increased risk of encountering a multitude of interrelated health disorders (Larsen et al., 2001; Lean et al., 2013). In a study that included 151,000 records, Ingvartsen et al. (2003) clearly demonstrated that disease incidence is highest during the first 10 days after calving. Negative energy balance, macromineral-related disorders and reduced immunity are the three major causes of transition period diseases (Goff, 2006a). Prevention of health disorders around calving is based on the implementation of various managerial and nutritional strategies; for example, body condition score (BCS) evaluation and post calving β-hydroxybutyric acid (BHBA) serum concentration are proposed to be routinely used as energy balance indicators (Oikonomou et al., 2008a; LeBlanc, 2010).

Macromineral serum concentration changes are mainly caused by increased cow requirements at the onset of lactation combined with reduced feed intake and possibly delayed homeostatic mechanisms (Goff, 2006a). Macromineral-related disorders, relating to calcium (Ca), phosphorus
(P), magnesium (Mg) and potassium (K) concentrations, are at the center of the disease cascade that dairy cows experience during the transition period (Goff, 2004), in either clinical or subclinical form (Goff, 2006b).

Subclinical hypocalcemia (SCHCa, serum Ca concentration < 8.3 mg/dL) is by far the most common macromineral-related health disorder associated with calving (Horst and Goff, 2003; Goff, 2008; Peek and Divers, 2008). Clinical hypocalcemia (parturient paresis – “milk fever”, MF) has a detrimental role in major post-calving clinical disease incidence, since it is associated with: retained fetal membranes (RFM), metritis (MET), mastitis (MAST), displaced abomasum (left or right, LDA and RDA, respectively), ketosis (KET) and uterine prolapse (UP) (Correa et al., 1990; Gröhn and Bruss, 1990; DeGaris and Lean, 2008). Subclinical hypocalcemia is assumed to have the same negative effects but relevant literature is lacking.

Lower than normal P concentrations (HypoP, P < 4.2 mg/dL) are common at the onset of lactation; recumbent MF dairy cows often have very low P concentration (P < 2.0 mg/dL) (Goff, 2004). Elevated P concentrations (HyperP, P > 7.80 mg/dL) increase the risk of MF (Lean et al., 2013; Grünberg, 2014). While clinical hypomagnesaemia (“grass tetany”, serum Mg < 1.0 mg/dL) may still appear in grazing herds, it is not at all common in confined and TMR-fed cows (Peek and Divers, 2008). On the other hand, subclinical hypomagnesemia (SCHMg, serum Mg < 1.8 mg/dL) is involved in the etiology of SCHCa and MF (Littledike et al., 1983; Rude, 1998; Schonewille et al., 2008). Mild hypokalemia (serum K between 2.6 and 3.8 mmol/L) is common in early lactation (Sattler and Fecteau, 2014), while severe hypokalemia (serum K < 2.5 mmol/L)
is very rare in dairy cattle, mostly associated with concurrent infectious disease (Sattler et al. 1998).

Macromineral-related disorders usually resolve by the end of the first week post-calving but their effects are long-lasting, impairing milk production and reproductive efficiency of dairy cows (Goff, 2006b). Despite the extensive knowledge regarding the pathophysiology of macromineral-related disorders and the various management practices that may alleviate them (Thilsing-Hansen et al., 2002; Goff, 2004; Mulligan et al., 2006), problems are still common. Disease incidence rates, even in many well-managed herds, still remain unacceptably high (Mulligan and Doherty, 2008). During the last decades, genetic selection for disease resistance enjoys increased popularity because genetic progress, no matter how small, is permanent and cumulative (Eggen, 2012). Genetic parameters for various clinical diseases around calving have been estimated in several large scale studies (Lin et al., 1989; Lyons et al., 1991; Heringstad et al., 2005). Heritabilities of Ca, P, Mg and K serum concentrations have only recently been reported (Tsiamadis et al., 2016); however, there is lack of information concerning subclinical macromineral-related disorders.

The objectives of this study were to estimate: 1) the heritability of SCHCa, HypoP, HyperP, SCHMg, HypoK, BHBA and BCS, 2) the heritability of major clinical health disorders (MF, RFM, MET, MAST, LDA, RDA, KET and UP) and 3) relevant genetic and phenotypic correlations, during the first 8 days after calving.
MATERIALS AND METHODS

The research was conducted in compliance with institutional guidelines and approved by the Research Committee of the Aristotle University of Thessaloniki, Thessaloniki, Greece. All farmers gave informed consent for the cows to be included in the study and to undergo the testing procedures.

Animals and Management

A total of 1,021 Holstein cows from 9 commercial free-stall dairy herds in Northern Greece were included in the study. The distribution across parities was 466, 242, 165 and 148 cows for parities 1, 2, 3 and 4 and above, respectively. Farms were visited regularly between November 2010 and November 2012 for data collection. No herd used any kind of preventive measures for hypocalcemia. Total mixed rations (TMR) were formulated to meet or exceed net energy and metabolizable protein requirements according to National Research Council recommendations (NRC, 2001).

Clinical Examination, Blood Sampling and Analyses

All animals were clinically examined and blood sampled by the first author on the 1st, 2nd, 4th and 8th day after calving. Body condition score was recorded on the 1st and 8th day after calving using the 1- to 5- point scale of Ferguson et al. (1994), in increments of 0.25. At this scale, 1 is for emaciated and 5 for obese animals.

Blood sampling was performed by coccygeal venipuncture into 10-ml vacuum glass tubes without anticoagulant (BD Vacutainer®, Plymouth, United Kingdom) for serum macromineral
measurements. Samples were placed in a cooler, transported to the Diagnostic Laboratory of the Faculty of Veterinary Medicine and centrifuged immediately upon arrival (3,000 x g for 15 min, room temperature 21°C). Serum was transferred into polyethylene tubes and stored at -80°C until assay. All sera were analyzed for total Ca and Mg concentrations using flame atomic absorption spectrophotometry (Perkin Elmer Analyst 100, Perkin Elmer Co, Norwalk, CT, USA), according to manufacturer’s instructions. Serum inorganic phosphorus concentrations were determined photometrically using a Flexor E autoanalyzer (Vital Scientific, Spankeren, The Netherlands), according to the procedure described by Daly and Ertingshausen (1972), with the use of standard commercial reagents (Thermo Fisher Scientific Inc. USA). Potassium serum concentrations were measured using an ion-selective electrode according to manufacturer’s instructions (Electrolyte Analyzer 9180, Roche Austria). The intra- and inter-assay coefficients of variation for all the above analyses were less than 3%. Beta-hydroxybutyric acid was measured only on the 8th day after calving by a spectrophotometric kinetic method (Bruss, 2008). The intra-assay coefficient was 2 to 4%, while the inter-assay coefficient was 4 to 8%, both of which are within the desirable range.

Disease Definitions and Cut-offs

In our study, SCHCa, HypoP, HyperP, SCHMg and HypoK were defined based on threshold values provided in relevant literature and were expressed as presence or absence of the condition (binary traits). Animals with serum concentrations below or equal to 8.3 mg/dL for Ca, 4.2 mg/dL for P, 1.8 mg/dL for Mg, and 3.9 mmol/L for K, were considered as cases of SCHCa, HypoP, SCHMg and HypoK, respectively (Goff, 2008; Divers and Peek, 2008; Horst and Goff, 2003). Moreover, animals with inorganic serum P concentration ≥ 7.80 mg/dL were considered
HyperP cases, while cows with serum BHBA $\geq 1,200 \, \mu\text{mol/L}$ were considered subclinically ketotic (Divers and Peek, 2008).

Clinical diseases were defined as follows: a) MF, standing (showing mild ataxia, excitability, muscle tremors and reduced ruminal motility) or recumbent cow (Kelton et al., 1998; Oetzel, 2011); b) RFM, fetal membranes were visible at the vulva or were identified in the uterus by vaginal examination more than 12 hours after calving (Melendez et al., 2003); c) MET, fetid uterine discharge, with or without fever (Sheldon et al., 2006); d) MAST, milk clots or abnormal mammary discharge from one or more quarters (Kelton et al., 1998); e) KET, decreased appetite together with elevated blood BHBA ($> 2,000 \, \mu\text{mol/L}$), in the absence of obvious concurrent disease (Kelton et al., 1998; Duffield et al., 2009); f) LDA/RDA, decreased appetite accompanied by a clearly audible “ping” sound, produced by percussion of the left/right abdominal wall (between the 9th and 12th ribs), respectively (Kelton et al., 1998).

Data set

Pedigree information was available for all 1,021 cows (332 common sires and 786 common dams). The total population in the study increased to 4,262 animals, when all available pedigree information included, spanning the last 5 (overlapping) generations. Calving date, parity number, calving ease and twinning was recorded. From the 1,021 cows, 35 were diagnosed with MF during the first 4 days after calving, treated appropriately with intravenous Ca and excluded from the genetic analysis of macromineral-related health traits. Therefore, 986 cows were included in the genetic analysis for SCHCa, HypoP, HyperP, SCHMg and HypoK. However, genetic
analysis for the other recorded clinical health traits (MF, RFM, MET, MAST, LDA, RDA, KET and UP) included all 1,021 cows.

The final data set included 4,064 clinical observations for MF, RFM, MET, MAST, LDA, RDA, KET and UP. Moreover, observations for death (DE) and involuntary culling (INVCULL) during the same time-period were also included in the data set, as well as 1,988 BCS records. In total, 16,848 biochemical records were available, consisting of 4,020 Ca, 4,019 P, 4,020 Mg, 3,792 K (days 1, 2, 4 and 8 after calving) and 997 BHBA (only on day 8) measurements. Changes of the macrominerals concentrations between day 1 and day 4, as well as between day 1 and day 8 were calculated as the regression slope of macromineral concentrations on time. Thus, these measurements reflected the average daily change in said concentrations and were treated as different traits.

Statistical Analysis

Macromineral-related and disease-related health traits measured on days 1 through 8 were analyzed with a random regression model which accounted for the covariance between successive records of the same animal; each trait was analyzed separately:

\[
Y_{ijkmn} = HYS_i + L_j + M_k + a_1 \cdot age + \sum_{m=0}^{2} b_m P_m D + \sum_{m=0}^{2} A_{nm} P_m D + e_{ijkmn}
\]

(1)

where:

- \(Y_{ijkmn}\) is the health trait record of cow \(n\);
- \(HYS_i\) is the fixed effect of herd-year-season of calving \(i\) (72 levels);
L_j the fixed effect of number of lactation j (4 levels);

M_k the fixed effect of calendar month k (12 levels);

a_1 the linear regression coefficient on age at calving (age);

P_m orthogonal polynomial of order m;

b_m the fixed regression coefficient on days from calving (D);

A_{nm} the random regression coefficient on days from calving associated with the additive genetic effect of cow n including all pedigree data (4,262 animals spanning five generations);

e_{ijklmn} the random residual term.

The fixed effects in the model including the polynomial order in the fixed regression were fitted after preliminary analyses had confirmed their statistically significant effect (P<0.05) on the traits based on the F-test. Further increasing the order of the polynomial did not have a significant effect (P>0.05). Similarly, the final order of the random polynomial (third for either trait) was determined with the use of the log-likelihood ratio test in sequential analyses of gradually increasing orders. The final order choice was also confirmed with the Akaike Information Criterion test. Four measurement error classes were defined for each the day from calving (1^{st}, 2^{nd}, 4^{th} and 8^{th}). The definition of these classes, even at this small time span, aimed to capture the day-to-day differences in health events at the beginning of lactation. Covariances between the error classes were assumed to be zero.

A random permanent environment effect was also fitted to model (1) resulting in a practically zero corresponding variance component estimate, possibly due to the short period our data
spanned (8 days). The log-likelihood ratio tests between the models including and excluding permanent environment were not significant (P>0.05) in all analyses.

There was also an effort to fit a Logit function in model (1) to account for the binary nature of the disease traits. However, this was proved unfeasible within the context of a random regression model.

Serum BHBA concentration for day 8 from calving and average estimates for BCS on days 1 and 8 and serum concentration changes between day 1 and day 4 (days 1-4), as well as day 1 and day 8 (days 1-8) after calving were analyzed using the following model:

\[Y_{ijkm} = HYS_i + L_j + a_1 \cdot age + A_k + e_{ijkm} \]

where \(Y_{ijkm} \) is the log-transformed value for serum BHBA concentration or BCS or macromineral concentration change of cow k; \(A_k \) is the additive genetic effect of cow k and all effects are as in model 1.

Estimates of variance components from each model were used to calculate heritabilities for each trait, with the following equation:

\[h^2 = \frac{\sigma_a^2}{\sigma_p^2} \]
where h^2 = the heritability estimate, σ_a^2 = the additive genetic variance and σ_p^2 = the phenotypic variance.

Genetic (r_a) and phenotypic (r_p) correlations among all traits analyzed with the above models were estimated based on co-variance components derived with a series of bivariate analyses based on the same model described for each trait, with the following equation:

$$r_{(a,p)} = \frac{Cov_{(a,p)}(X,Y)}{\sqrt{\sigma_{(a,p)}^2_x \times \sigma_{(a,p)}^2_y}}$$

where Cov$_{(a,p)}(X,Y)$ = the additive genetic (Cov$_a$) or phenotypic (Cov$_p$) co-variance of traits X and Y and $\sigma_{(a,p)}^2_x$ and $\sigma_{(a,p)}^2_y$ are the genetic (σ_a^2) or phenotypic (σ_p^2) variances of relevant traits.

All analyses were conducted using the statistical software package ASREML (Gilmour and Gogel, 2006). In all cases, statistical significance was set at $P<0.05$.

RESULTS

Descriptive statistics for Ca, P, Mg, K and BHBA serum concentrations and BCS are presented in Table 1. Average incidence of health disorders during the same time period after calving is presented in Table 2.

Random regression model was used for the generation of prevalence curves across all lactations for all health disorders during the first 8 days after calving. However, this was possible only for
SCHCa, HypoP, SCHMg, HypoK, and HyperP (Figure 1), and also for MF, LDA and MAST (Figure 2). The remaining health disorders had either low incidence (RDA, UP, INVCULL, DE), or were not present throughout the entire 8 day period (RFM: present only the first day; MET, KET: present mainly after the 4th day), thus rendering it impossible to generate curves.

Day-to-day variances (phenotypic, genetic, and residual) and heritabilities for SCHCa, HypoP, SCHMg, HypoK, and HyperP are shown in Table 3 and for MF, LDA, and MAST in Table 4. All estimates presented were statistically greater than zero (P < 0.05). Day-to-day heritability estimates were low to moderate for SCHCa (h² = 0.13 – 0.25), HypoP (h² = 0.18 – 0.33), HyperP (h² = 0.14 – 0.22), SCHMg (h² = 0.11 – 0.38) and LDA (h² = 0.19 – 0.31), low for HypoK and MF (h² = 0.07 – 0.11), and moderate to high for MAST (h² = 0.15 – 0.41). Regarding serum BHBA, the heritability estimate was not statistically significant (h² = 0.073±0.077, P = 0.12), while for BCS was statistically significant (h² = 0.20±0.10, P < 0.05).

Significant genetic correlations: a) between serum Ca, P, Mg and K concentrations and health disorders, b) of macromineral concentration changes in days 1-4 and 1-8 after calving with health disorders, and c) among health disorders were not detected in the present study.

Statistically significant phenotypic correlations between overall serum Ca, P, Mg and K concentrations and health disorders during the first 8 days after calving are shown in Table 5. Calcium, Mg and K concentrations had high negative correlations with the related subclinical disorders; this was not the case with P. Serum Ca concentrations had a low positive correlation with BCS and a low negative correlation with BHBA; moreover, correlations with most health
disorders were negative, either low (HypoP, HypoK, HyperP, LDA, RFM, MET and DE) or moderate (MF, SCHMg). Correlations of Mg and K concentrations with health disorders were similar with those of Ca. Magnesium (but not K) concentrations had a low positive correlation with BCS. For those health disorders that significant correlations were detected, all were negative albeit low. Regarding P, only a high positive correlation with HyperP and low ones with MAST and UP were detected.

Statistically significant phenotypic correlations of serum macromineral concentrations on day 1 and their changes from day 1 to 4 and 1 to 8 after calving with health disorders during the first 8 days after calving are shown in Table 6. Calcium concentrations on day 1 and their changes had similar correlations with the various health disorders as those presented in Table 5. Calcium concentration on day 1 was mostly correlated with low concentrations of the other macrominerals, with Ca-related disorders (SCHCa and MF) and MET, while Ca changes were correlated with RFM, MET, KET, DE and INVCULL. Phosphorus concentration on day 1 had similar correlations with the same health disorders as those presented in Table 5, as well. Moreover, a negative correlation with BCS was detected. Phosphorus decrease over time was negatively correlated with HyperP and positively correlated with MF, RFM and DE. High Mg concentration on day 1 was again positively correlated with BCS and negatively with SCHMg and MET. Magnesium changes were correlated with SCHCa, HypoP and BHBA, LDA, MET and DE. Potassium concentrations on day 1 had also similar correlations with the same health disorders as those presented in Table 5. Potassium changes were significantly correlated with HyperP and SCHCa.
Statistically significant phenotypic correlations of MF, SCHCa, HypoP, HyperP, SCHMg and HypoK with transition period health events are shown in Table 7. Correlations were low but follow the same pattern as those of the respective macromineral serum concentrations, definitely connecting these health conditions with each other.

DISCUSSION

This study aimed to estimate genetic parameters of subclinical and clinical diseases that occur during the first 8 days after calving. Detailed records were obtained including day-to-day clinical examination of cows by the same veterinarian.

Incidence of health disorders was estimated during the first 8 days after calving and a mixed model was used for the estimation of the day-to-day prevalence, which was modeled as a third polynomial fixed regression on days postpartum. The latter gave an accurate mapping of the health status of the population in study.

Prevalence in this study is in agreement with those of Reinhardt et al. (2011) regarding SCHCa, of Staufenbiel (2002) and Macrae et al. (2006) regarding HypoP and HyperP, of Masoero et al. (2003) regarding SCHMg and of Peek and Divers (2008) regarding HypoK. Moreover, incidence and prevalence of major clinical diseases recorded in this study were very similar with those reported in the literature (Kelton et al., 1998; Heringstad et al., 2005; Melendez and Risco, 2005; LeBlanc, 2008). Therefore, our estimations of various genetic parameters are concurrent with the global Holstein population kept under similar management practices.
Heritabilities of Ca, P, Mg and K serum concentrations have only recently been reported (Tsiamadis et al., 2016). Heritabilities of SCHCa, HypoP, HyperP, SCHMg and HypoK estimated in this study, are reported for the first time in the literature. They were low to moderate but generally within the range reported for other traits such as milk yield ($h^2 = 0.20 - 0.50$) (Castillo-Juarez et al., 2000; Windig et al., 2006; Bastin et al., 2011), somatic cell count ($h^2 = 0.03 - 0.11$) (Koeck et al., 2012; Heringstad et al., 2006) and longevity ($h^2 = 0.01 - 0.36$) (Veerkamp and Brotherstone, 2001; Jamrozik et al., 2008), which are already used in breeding programs. Heringstad et al. (2007) reported that there is potential for selection against metabolic disease resistance and there are several studies that investigate the genetic basis of non-infectious disease resistance (Lin et al., 1989; Lyons et al., 1991; Abdel-Azim et al., 2005). Substantial and statistically significant genetic variance estimates derived in the present study corroborate these assertions.

At the same time, low heritability estimates suggest that environmental factors have a strong influence in the etiology of the studied traits. Nutrition, management and housing of cows during the transition period emerge as critical factors for prevention of these health disorders in the short term. Nevertheless, genetic selection for resistance for these macromineral deficiency traits could be effective and add permanent benefits to successfully address the problem in the long term, thereby complementing management practices.

Heritability of BHBA in the present study was not statistically significant ($h^2 = 0.073\pm0.077$). Oikonomou et al. (2008b) also reported heritability estimates in primiparous Holstein cows ($h^2 = 0.25\pm0.18$), which were not statistically significant. However, recently, van der Drift et al.
in a study of 1,772 Holstein cows of various parities between 5 and 60 days after calving from 123 herds, using a similar animal model, reported a heritability estimate of 0.17±0.06 (P<0.001). This higher heritability estimate can be attributed to the much wider sampling period (1 blood sample between 5 to 60 days after calving), which possibly resulted in a higher incidence of hyperketonemia. The heritability estimate of BCS was statistically significant in the present study (h²=0.20±0.10). Koenen et al. (2001), Veerkamp and Brotherstone (2001) and Oikonomou et al. (2008b) reported higher estimates (0.28 – 0.50) that were statistically significant. Others (Jones et al., 1999; Dechow et al., 2001; Bastin et al., 2010) have reported lower estimates (0.07 – 0.20), which are similar to our results. Heritability estimates of BCS tend to be larger in mid to late lactation (Dechow et al., 2001) and it is likely that the focus of this study on the first week after calving could have led to this moderate estimate.

The present study’s estimates of MF heritability (h² =0.07 – 0.11) are in agreement with those of Dyrendahl et al. (1972), Uribe et al. (1995), Pryce et al. (1997), Van Dorp et al. (1998) and Heringstad et al. (2005). These, however, are generally lower than estimates reported by Lin et al. (1989), Lyons et al. (1991) and Abdel-Azim et al. (2005) (h² = 0.30 – 0.40). Differences in estimates can be attributed to methodology of statistical analysis, data collection (farm records), and type and age of the population studied.

Our heritability estimates for LDA (h²=0.18 – 0.31) are similar to those reported by Uribe et al., (1995) (h² = 0.304±0.005, across lactation with a threshold model). This is higher than other estimates from linear models reported by Lyons et al. (1991), Appuhamy et al. (2009) and Koeck et al. (2013). Moreover, Wolf (2001) and Hamann et al. (2004) with the use of threshold models
reported heritability estimates above 0.50. The moderate to high heritability estimates of the present study can be attributed to a more accurate recording of the displacement made by the veterinarian and to the binary nature of the trait that posed no ambiguity to the severity of the disease and thus to the certainty of the diagnosis.

Heritability estimates for MAST vary across studies. Lin et al. (1989) reported heritabilities of 0.19±0.08, 0.31±0.10 and 0.18±0.09 for the 1st, 2nd and 3rd+ lactation, respectively. Uribe et al. (1995) reported similar estimates for 1st lactation cows (h² = 0.15±0.05) but for all lactations estimates were zero. Zwald et al. (2004) and Heringstad et al. (2005) reported much lower estimates (h² = 0.09±0.01); more recently, Pérez-Cabal et al. (2009) and Vazquez et al. (2009) also reported similar heritabilities (h²= 0.09 and h² = 0.13, respectively), while Koeck et al. (2013) estimated the heritability of clinical mastitis at 0.02±0.004. However, all these studies estimated mastitis heritability across lactation. Our estimates (h² = 0.15 – 0.41) cover a small portion of the entire lactation, only the first 8 days. Considering that clinical mastitis immediately after calving is influenced by factors such as dry period management and compromised immune status due to calving (Kimura et al., 2006; LeBlanc, 2010), this may well be a different trait which, based on our results, could potentially respond to selection.

The present study did not detect any significant genetic correlation of Ca, P, Mg and K serum concentrations and BCS with any postpartum health disorders. The absence of genetic correlations could be attributed to the multifactorial etiology of most of these health events: infectious agents may co-exist with metabolic and managerial deficiencies. Moreover, this lack of genetic correlation may support the idea that these traits are controlled genetically by different
genes and individual selection should be applied. Contrary to expectations, this study did not find a significant genetic correlation between SCHCa and MF. However, considering the disease definitions, MF cases were defined as standing (showing mild ataxia, excitability, muscle tremors and reduced ruminal motility) or recumbent cows; therefore, MF definition was solely based on symptoms and not in any serum Ca measurement. Furthermore, this absence of genetic correlation could also be attributed to the low incidence of MF. In this study, recumbent cows were immediately treated with intravenous Ca solutions, rendering the measurement of serum Ca concentrations meaningless. Moreover, it is known that there is no specific threshold of Ca serum concentrations which always results in recumbent cows. Regarding the absence of any genetic correlation of the remaining macrominerals with other health disorders, this may also be attributed to the multifactorial etiology and to the low incidence of some of the health disorders (e.g. metritis, mastitis and ketosis). On the other hand, the lack of any significant genetic correlation in this study may be incidental. Therefore, as this is the first study of its kind, the genetic analysis of other independent data sets may shed more light on this issue; more research is needed in order to clarify these issues.

The reported phenotypic association of clinical and subclinical hypocalcemia with various diseases after calving is based almost solely on pathophysiology, because of calcium’s central metabolic role; it is generally assumed that P and Mg serum concentrations are associated with the same postpartum diseases through their relation with Ca metabolism (Rude, 1998; Goff, 2000; DeGaris and Lean, 2008). In a study of 2,190 cows from 33 herds, Curtis et al. (1983) showed that cows with clinical hypocalcemia (MF) were at greater risk of developing dystocia (6.5 times), RFM (3.2 times), KET (8.9 times) and MAST (8.1 times). Martinez et al. (2012)
found that cows with low serum Ca have higher BHBA concentrations. However, large scale research-based evidence for any association of subclinical macromineral-related disorders with postpartum cow health is lacking. In the present study, statistically significant phenotypic correlations of the four major macrominerals’ serum concentrations and the corresponding subclinical disorders with the early postpartum disease cascade in dairy cows are reported for the first time. A strong association with energy metabolism is evident both at the KET and BHBA, as well as the BCS levels, with serious indirect and direct implications for future reproductive performance (RFM, MET and UP), MAST and replacement rates (LDA, INVCULL and DE). The correlation of HyperP with MAST is a novel finding and the exact mechanism of this association has to be further investigated. These results highlight not only the need for genetic selection against these subclinical disorders, which is feasible based on our heritability estimates, but also for enhanced implementation of pertinent management practices.

Herd management during early postpartum is a challenge for modern dairy farms. The ability of an animal to maintain normal serum macromineral concentrations is consistent with the successful management of the numerous health events after calving. Rapid metabolic changes of animals combined with stressors such as nutritional and grouping changes further compromise immunity status, favor metabolic and infectious diseases, and downgrade productivity and welfare. Postpartum health monitoring programs are implemented in many dairy farms worldwide since they greatly contribute to the early recognition and proper treatment of sick animals (Risco, 2011). Obviously, genetic selection can provide a valuable tool, as well. Standardized health monitoring programs across regions and countries could provide accurate phenotype information for novel functional traits, the discovery of their genetic markers and
finally, the creation of a new index ("disease resistance early postpartum"). This is, indeed, a very exciting prospect.

CONCLUSIONS

More research is needed on this issue, but results of the present study clearly indicate that subclinical Ca, P, Mg and K disorders during the first week after calving are heritable traits. Moreover, significant heritability estimates of BCS and MF, MAST and LDA during the same period were also derived. These genetic parameters can potentially be used to develop health indices for the selection of dairy cows that will effectively resist health challenges immediately after calving. Phenotypic correlations of high prevalence subclinical macromineral disorders with clinical diseases, reveal a deeper interrelationship among these traits and stresses the need for both innovative genetic selection and effective management practices.

REFERENCES

Bastin, C., S. Loker, N. Gengler, A. Sewalem, and F. Miglior. 2010. Genetic relationships between body condition score and reproduction traits in Canadian Holstein and Ayrshire

Van Dorp, T.E., J.C. Dekkers, S.W. Martin, and J.P. Noordhuizen. 1998. Genetic parameters of health disorders, and relationships with 305-day milk yield and conformation traits of

van der Drift, S.G.A., K.J.E. van Hulzen, T.G. Teweldemedhn, R. Jorritsma, M. Nielen, and H.C.M. Heuven. 2012. Genetic and nongenetic variation in plasma and milk β-

lactational performance and health: Is it yield or metabolic imbalance that cause production

daughter condition-score changes using a random regression model. *Anim. Sci.* 68.

Kelton, D.F., K.D. Lissemore, and R.E. Martin. 1998. Recommendations for recording and
calculating the incidence of selected clinical diseases of dairy cattle. *J. Dairy Sci.* 81:2502–
2509. doi:10.3168/jds.S0022-0302(98)70142-0.

Kimura, K., T. a Reinhardt, and J.P. Goff. 2006. Parturition and hypocalcemia blunts calcium
0302(06)72335-9.

ketosis and displaced abomasum with milk production traits in early first lactation of

Martinez, N., C.A. Risco, F.S. Lima, R.S. Bisinotto, L.F. Greco, E.S. Ribeiro, F. Maunsell, K.

Tsiamadis Figure 1.
Tsiamadis Figure 2.