
Copyright © Cambridge University Press 2015.

This is an Accepted Manuscript of an article published by Cambridge University Press in a revised form with their editorial input. The final published version is available online http://dx.doi.org/10.1017/S1742170515000381

http://hdl.handle.net/11262/10865

Deposited on: 2 May 2016
Predicting the effect of rotation design on N, P, K balances on organic farms using the NDICEA model

Laurence G. Smith1,2, Davide Tarsitano3, Cairistiona F. E. Topp3, Stephanie K. Jones3, Catherine L. Gerrard1, Bruce D. Pearce1, Adrian G. Williams2* and Christine A. Watson4

Abstract

The dynamic model NDICEA (Nitrogen Dynamics In Crop rotations in Ecological Agriculture) was used to assess the Nitrogen (N), phosphorus (P) and potassium (K) balance of long term organic cropping trials and typical organic crop rotations on a range of soil types and rainfall zones in the UK. The measurements of soil N taken at each of the organic trial sites were also used to assess the performance of NDICEA. The modelled outputs compared well to recorded soil nitrogen levels, with relatively small error margins. NDICEA therefore seems to be a useful tool for UK organic farmers.

The modelling of typical organic rotations has shown that positive N balances can be achieved, although negative N balances can occur under high rainfall conditions and on lighter soil types as a result of leaching. The analysis and modelling also showed that some organic cropping systems rely on imported sources of P and K to maintain an adequate balance and large deficits of both nutrients are apparent in stockless systems. Although the K deficits could be addressed through the buffering capacity of minerals, the amount available for crop uptake will depend on the type and amount of minerals present, current cropping and fertilisation practices and the climatic environment. A P deficit represents a more fundamental problem for the maintenance of crop yields and the organic

1 The Organic Research Centre, Hamstead Marshall, RG20 0HR, UK
2 School of Environment, Energy and AgriFood, Cranfield University, Bedford, MK43 0AL, UK
3 Crop and Soils Systems, Scotland’s Rural College (SRUC), West Mains Rd, Edinburgh, EH9 3JG, UK
4 Crop and Soils Systems, Scotland’s Rural College (SRUC), Craibstone Estate, Aberdeen, AB21 9YA, UK
sector currently relies on mined sources of P which represents a fundamental conflict with the
International Federation of Organic Agriculture Movements (IFOAM) organic principles.

*Corresponding author: adrian.williams@cranfield.ac.uk

Keywords: organic farming; nutrients; sustainability; crop rotation

Introduction

Organic cropping systems focus on feeding the soil, rather than the plant, to build long-term system
health and resilience [1]. This approach results in a reliance on fertility building ley periods and the
application of composts and manures, which supply a source of nutrition for the growing crops
whilst potentially improving the soil microbial life and organic matter contents [1, 2]. The length of
the ley period can vary from short term (12-18 months) to long term (around 5 years), but typically
the ley is kept for about 18 months to 3 years. In Europe, organic farmers most frequently use grass-
clover mixes for their leys, with white clover (Trifolium repens) and red clover (T. pratense) being
popular legume species and perennial ryegrass (Lolium perenne) and Italian ryegrass (L. multiflorum)
as commonly chosen grass species [3]. The crops following the ley period make use of the built-up
fertility, although the ley period can also remove fertility, in particular K in conserved grass (silage).
Cropping following the ley phase often includes rotational use of over-winter green manures and
cover crops such as cereal rye (Secale cereale) and vetch (Vicia satvia) to reduce losses and to supply
additional N through biological fixation [1]. The use of these approaches on organic farms creates
systems in which the nitrogen supplied is in a less available form, compared with conventional
systems using mineral fertiliser [4]. The supply of available nitrogen in organic systems can therefore
be a limiting factor for the maintenance of crop yields [5-7]. In addition, poor synchronicity between
the supply and demand for nitrogen can lead to leaching and gaseous losses, particularly following
ley cultivation. Nevertheless, this is also an issue for conventional farmers, particularly following
periods of high rainfall [6, 8, 9]. Under organic management, the surplus of N following ley cultivation
can be followed by an N deficit later in the crop rotation[5]. Although this shortage can be resolved through the application of organic composts, manures, and/or through the use of short-term green manures, it can be difficult to match the N supplied from such sources with crop demand. A reliance on such methods can therefore contribute to lower nitrogen use efficiencies compared to non-organic systems applying targeted mineral N [4, 6]. Despite the challenges of N availability and synchronicity of N supply/demand on organic farms, Berry \textit{et al.} [10] found positive N balances in a comparison of nine organic farms, and reported that the farms were probably sustainable in terms of N supply and offtake. However, the same study found that phosphorus (P) and potassium (K) levels were in deficit within the stockless systems assessed, and that only farms with large manure returns from stock fed with bought-in feed had a positive or neutral K budget. Korsaeth \textit{et al.} [11] and Torstensson \textit{et al.} [4] also found P and K deficits within organic arable cropping and mixed dairy farming systems in Norway and Sweden respectively.

The research presented here aimed to assess the effect of rotation design on the supply and offtake of nitrogen (N), phosphorus (P) and potassium (K) on organic farms using the dynamic model NDICEA (Nitrogen Dynamics In Crop rotations in Ecological Agriculture). Five hypotheses were posed at the outset of this study. First, NDICEA can effectively calculate the course of mineral-N over a range of organic crop rotations. Second, the N supplied through biological fixation in stockless organic rotations is sufficient to support crop offtake. Third, organic cropping systems incorporating livestock manure applications are able to maintain a positive or neutral N, P and K balance. Fourth, organic rotations will typically rely on imported P to maintain a balance of this nutrient. Fifth, a deficit of K is a common feature in the overall nutrient balance of typical organic crop rotations.
Methods

The NDICEA model(17,18) was applied to assess the supply and demand of nitrogen (N), phosphorus (P) and potassium (K) within a range of stocked (i.e. with manure) and stockless rotations applied at experimental organic farms in the UK. In addition, typical organic rotations were drawn from the literature.

Model description

NDICEA is a dynamic, target-oriented model with crop yield and crop quality parameters, e.g. dry matter, N, P and K contents, used as a basis for crop uptake calculations. Mineralisation of nitrogen from soil organic matter and organic inputs such as manure and compost is also calculated, factoring in the effects of weather, irrigation and soil type, although the model does not account for volatilisation losses during composting / storage of manure. The model uses a daily time step, utilising site specific weather data (rainfall, temperature, evapotranspiration) and user-defined soil and crop parameters. Although the model contains default values for a range of soil types these values can be automatically adjusted through the addition of data on measured soil mineral nitrogen and soil organic matter within the user interface. Following the entry of these values calibration of the model takes place through the implementation of an algorithm that selects an optimum parameter value from a range of plausible values for such variables as N leaching, denitrification and water holding capacity[12]. Within this study measured values of soil mineral nitrogen and soil organic matter were used to calibrate the model runs and improve the accuracy of the assessments (see Table 3). A repeat calculations function within the model also allows the user to assess the longer term impacts of rotations both in terms of the nutrient supply and the effect on organic matter stocks. The focus of the model is on nitrogen dynamics. For P and K, a simpler farm-gate balance approach is taken (i.e. only crop offtake and atmospheric deposition is calculated, based on the user-defined input parameters and/or default values). The calculations for P and K are also
unaffected by changing the soil type or daily rainfall and evapotranspiration values within the model. The wide range of cover crops and green manure-options within the NDICEA interface makes the tool particularly applicable for organic farmers, however the tool can also be used to improve understanding of nitrogen dynamics under non-organic management[12]. Under both organic and non-organic management model performance will be improved by calibration, with a higher number of measurements improving the accuracy of the estimates of N supply and losses[13].

Description of sites and cropping systems

The model was run using crop, soil and weather data from the UK Government funded organic conversion trials held at ADAS Terrington[14], Warwick University’s Hunts Mill site[15] as well as other long term trials at Elm Farm Research Centre (EFRC)[16], Scotland’s Rural College (SRUC Tulloch and Woodside[17]) and a grazing only trial at the Institute of Biological, Environmental and Rural Sciences (IBERS) at the University of Aberystwyth (Ty Gwyn)[18]. Please see Table 1 and Figure 1 for more information on the trials.

Soils data from each site were collected from project reports, site records and published literature[14-18]. The bulked soil samples at each site were taken along a W transect twice each year in the case of Elm Farm[16], Warwick University[15] and ADAS Terrington[14] (after sowing and harvest) and once per year at the SRUC sites[19] and at Ty Gwyn[18] (January and April respectively). Samples were analysed for available P (Modified Morgan’s solution at SRUC sites and Olsen’s method at other sites), available K (Modified Morgan’s solution at SRUC sites and ammonium nitrate extraction at ADAS and Elm Farm), mineral nitrogen (potassium chloride solution) and organic matter (loss on ignition). Soil samples were taken at a range of depths. At Elm Farm separate topsoil (0-15cm) and subsoil (15-30cm) samples were assessed for the above parameters. At Warwick University assessments were carried on samples from 0-30cm and 30-60cms. At Ty Gwyn and mineral nitrogen was sampled to 80cm in 15cm and 20cm increments respectively, although only the first sample...
layer was assessed for P, K and organic matter. At ADAS Terrington all samples were taken to 90cm in 15cm increments. At Woodside, the mineral nitrogen was sampled to 45cm in increments of 15cm, and at Tulloch, the mineral nitrogen was sampled to 30cm in increments of 15cm.

The rotations applied at EFRC and ADAS Terrington were managed as stockless systems, although phosphate fertilisers permitted under organic standards were applied. The EFRC trial received lime up to a maximum rate of 2 tonnes per hectare per year. Lime was similarly applied at the ADAS site in order to keep the pH between 6 and 6.5. All of the red clover leys at each site were managed through cutting and mulching. The Hunts Mill plot trials included both ‘with manure’ and ‘without manure’ treatments. Both sites at Hunts Mill received a single application of green waste compost at a rate of 20 tonnes per hectare. At the Ty Gywn organic dairy unit, manure was deposited at a rate consistent with 2 Livestock Units (LSU) per hectare and lime was applied at a mean rate of 0.7 t/ha over 3 years. At both of the SRUC sites (i.e. Tulloch and Woodside) total annual manure applications were based on 2.8 LSU/ha for the period 1991-1998. In addition ground limestone and potassium sulphate (K_2SO_4) were applied to all Woodside plots in 1991, at a rate of 3.75 t/ha and 150 kg/ha respectively. All grass-clover leys at SRUC sites were managed through a combination of grazing with sheep and cutting for silage as described in Taylor et al.[17].

In addition to data from the organic trials, information on typical organic rotations was gathered based on examples within the Organic Farm Management Handbook[20] and following guidelines given to organic farmers with respect to the proportion of fertility building leys to exploitative phase[1, 20] (see Table 2 for description of the rotations used). Manure application rates for the typical stocked cropping systems were derived using typical livestock numbers for cropping farms (i.e. 0.3 Grazing Livestock Units per Utilisable Agricultural hectare) reported within a sample of approximately 30 organic farms included within the FBS (Farm Business Survey) for England and Wales [21-23]. Rock phosphate application rates were derived with expert input from the Institute of Organic Training and Advice (IOTA) registered advisers.
The rotations were chosen to represent a range of stocked and stockless organic cropping systems. To assess the representativeness of the rotations crop areas were compared to those reported for a stratified sample of 30 organic farms included within the Organic Farm Income Reports published by Aberystwyth University and The Organic Research Centre [21-23].

As shown in Figure 2, the typical rotations are broadly representative of the crop areas reported on actual organic farms within the Farm Income Reports’ matched sample. Although there are some differences by crop type (e.g. both stocked simple and stockless simple containing a high percentage of cereal crops) the differences are generally in the region of 15-20%. In view of the wide variation between the rotations on individual farms, this is an acceptable margin of error and the rotations applied here can be considered to be broadly representative of organic cropping farms.

Model application

The model was applied to assess the effect of rotation design on the supply and offtake of nitrogen (N), phosphorus (P) and potassium (K) on the above experimental sites and within typical organic rotations. The measured changes in soil organic matter over time were small for most of the sites assessed (data not shown). It was therefore necessary to run the model a number of times to ensure a minimal gain or loss of soil organic matter and to avoid erroneous conclusions. Based on measured data and results from long term experiments [24, 25] a uniform, near steady-state was assumed to have been reached once the annual change in soil organic matter was less than 2% of the total organic matter pool (expressed in kg/ha) over the rotation. Two runs of the model were implemented for each site, an uncalibrated run, using only the basic, user-adjusted soil and crop parameters, and a calibrated run following the input of measured amounts of soil mineral N and soil organic matter to make the model automatically adjust advanced soil parameters such as N leaching.
and denitrification factors. The root mean square errors (RMSE) were calculated based on the size of the deviation between the measured soil N and modelled soil N values and the number of samples at each site. The observed N values were used therefore in the calibrated runs as both inputs to the model and as comparator for assessing model performance. Following the calculation of N, P and K balances for the trial sites, a further application of the model was implemented for the typical organic rotations described above, using the same soil and weather conditions as the trial sites.

Results and discussion

The modelled estimates for Soil Mineral Nitrogen (SMN) were compared with the sampled soil N values from each of the sites to test the ability of the model to simulate the measured rotations. An NPK balance for each of the rotations was then calculated.

Comparison of the NDICEA model’s estimates for soil N with measured mineral N values at each of the trial sites

A RMSE of 20 kg N ha$^{-1}$ or less was proposed by Van der Burgt et al.$^{[12]}$ to represent acceptable model performance for practical purposes. This could be achieved for most of the sites, although in some cases (e.g. EFRC and Hunts Mill) the modelled results are above this value (see calibrated model output in Table 3). The higher errors at EFRC could be a result of the small number of measurements (i.e. 7). The high errors for the stocked rotations at Hunts Mill could be explained by the fact that soil N measurements were taken soon after application of manures (the modelled values for this phase of the rotation were more than 100 kg N/ha lower than the recorded values). It may also be possible that the model is underestimating the nitrogen supplied or that the deeper samples at Hunts Mill (0-60cm) resulted in a mixing of topsoil and subsoil layers, and a subsequent overestimate of the mineral N content in the subsoil layer.
NPK balance for each of the rotations applied at the organic trial sites

Modelled nutrient balances derived from NDICEA are presented in Table 4 for each of the stockless rotations. The results include an estimate of the change in soil organic matter, with a negative number indicating mining of existing reserves and a positive number indicating an assimilation of N to soil organic matter (i.e. an increase in organic matter stocks).

Table 4 illustrates that the amount of N supplied through biological fixation could potentially support the crop removal at the EFRC trial, although due to losses from the system, in particular leaching, much of this N is lost. The negative values for organic N indicated a mining of organic matter over the course of the experiment. This decline was observed through field measurements with organic matter levels dropping from 32 g/kg⁻¹ to 25 g/kg⁻¹ of soil, probably as a result of starting the trial after a 5-6 year ley. Organic matter levels would be expected to rise again on return to a longer-term ley period, as is standard organic practice. The increase in organic matter levels from the implementation of a one-year fertility building ley was reflected in the NDICEA model, which showed a rise during this period, although the subsequent decline more than offset the gain. When a nutrient demanding crop was introduced into the rotation (e.g. potatoes in EFRC B) the deficit for all three nutrients increased to the extent that further use of external inputs (e.g. composts or manures) would be required, in particular for P and K. The high P and K offtake of beans similarly contributed to the large deficit of these two nutrients within the balance for rotation EFRC C.

A similar picture is presented for the rotation at ADAS Terrington. Despite the large contribution of N though fixation, there are considerable losses from leaching and denitrification, resulting in a negative N balance. It may be possible to address this problem through better use of over-winter cover crops (cover crops performed poorly over the course of the experiment with only one crop yielding over 1 t DM/ha). The deficits for P within this trial are also unsustainable in the long-term and would need to be addressed through imports or reducing the exploitative phase of
the rotation. The K deficits for this site are also substantial, however it is possible that weathering of K stocks in the mineral pool could redress this[26].

Lower rates of leaching were found for both Hunts Mill plots, although considerable deficits of P and K were also found despite the addition of green waste compost on area 1. The K deficits could be addressed through the buffering capacity of K-bearing minerals[26] however the P deficit represents a more fundamental issue for the maintenance of crop yields in the longer term[27]. The results for Hunts Mill area 6 also illustrate that it is possible to maintain a fairly balanced system with regard to N through the effective use of late summer/autumn sown green manures (i.e. without the use of a ley/break crop), although the overall deficit for N may result in a reduction in offtake or the need to use imported composts or manure.

Most of the stocked rotations were found to be more balanced with regard to N and P supply and loss (see Table 5). However, all of the SRUC sites faced a large K deficit, due to the high offtake from grass/clover silage, the potato crop (only at Woodside) and the use of straw for bedding, which were not offset by the manure application. Similar results were found within the nutrient balances for Tulloch and Woodside calculated by Watson et al.[28] although lower offtake was estimated within this study due to the lower assumptions on P and K content within NDICEA. Despite the K deficit, no trend in K levels was found over time at Tulloch or Woodside, although the soil samples were restricted to the first 30cm and 45cm due to the presence of indurated layers at deeper levels, largely impenetrable to soil augers or crop roots. It is possible that soil K levels at these sites were being supplemented by reserves within parent material, in addition to potential inputs from crop residues (these inputs are ignored in standard soil K measurements and in part explains why test values are unrelated to crop K balances[26]). These and other factors lead Khan et al.[26] to suggest that measurements of available soil K are an unreliable indicator and that producers should use strip trials to determine site-specific fertiliser management. At both Woodside sites, the rate of N leaching was higher than at Tulloch, despite a lower annual rainfall. This was in part
related to the lighter soil texture and the relatively low yield of the grass/clover leys at Woodside 37
(4-6 t DM/ha, Taylor et al.[17]) which was related to the high soil moisture deficit. The low
grass/clover yield at Woodside 37 also led to a negative N balance overall, due to a lower rate of
biological N fixation. Much of the excess nitrogen at the other SRUC sites was locked up as organic
matter (illustrated as a positive value under ‘Change in organic N’ in Table 5). This was observed
within the trial through a small increase in soil organic matter levels observed at Tulloch, although
the measured organic matter levels at Woodside remained relatively constant. Volatilization rates
were low across all of the stocked rotations in Table 5 as a result of incorporating applied manure on
the same day as application on the trial sites.

Nutrient (NPK) balance for typical rotations applied using site conditions of the organic

trials

Nutrient balances are presented in Table 6 for each of the typical rotations described in Table 2.
The results presented below are mean values across all six sites and associated soil/weather
conditions.

The stocked complex rotation described above seems to represent a well-balanced system
with regard to N, and P supply and offtake. However, the model predicted a relatively large K deficit
with offtake exceeding supply. As discussed earlier, this could be addressed through K delivery from
the weathering of minerals depending on the underlying geology, climatic conditions and site
management[26, 29], or through imported compost and/or mineral sources. The higher proportion of
nutrient-demanding crops (e.g. potatoes) within the stocked simple rotation creates a larger K deficit
compared to the stocked complex example. As with the stocked experimental sites in Table 5,
volatilization rates were low for all of the stocked rotations in Table 6, as a result of selecting same-
day incorporation of manure applied within NDICEA, and the low stocking density (i.e. 0.3 LSU per
hectare). The volatilisation losses would be expected to increase if incorporation was delayed for
any reason.
The stockless complex rotation has a deficit for all three nutrients. Two years of a red clover ley plus one year of spring beans did not provide enough N to support four years of crop offtake due to a high rate of leaching and denitrification. The presence of nutrient demanding crops contributes to the deficit (i.e. potatoes lead to a high N and K demand and beans to a high K offtake). The stockless simple rotation faces less of a deficit with respect to N, due to a higher input of biologically fixed N from the inclusion of peas which have a higher rate of N fixation than beans within NDICEA, and the use of the grass/vetch over-winter green manures following the spring crops. In addition there is an absence of nutrient demanding crops (e.g. potatoes) however the rate of leaching is still high. The relatively low deficit of P within all of the typical rotations is a result of the application of rock phosphate. All of the modelled rotations would face a P deficit on a similar scale to the K balance without the use of this input.

Implications for improved organic management

In common with previous studies, the work presented here found considerable rates of N leaching within the rotations assessed [4, 10, 30]. In some cases, this exceeded the amount lost by product removal (e.g. the stockless simple rotation described in Table 2). High rates of leaching under organic management are related to difficulties associated with matching crop N demand with N availability, particularly following incorporation of the ley when N availability exceeds demand [4, 31, 32]. The use of organic manures can also make it difficult to predict N availability, compared with applications of mineral fertiliser [33], making it more difficult to maximise N recovery and crop yields under organic management [34]. As a result of these factors, lower nitrogen use efficiency has been reported for organic cropping in comparisons with conventional systems [4, 31].

The effective use of over winter green manures and undersowing of leys in cereal crops will help to reduce losses and thus enhance overall N efficiency [4, 35] and the lowest rates of leaching within this study were found for the rotations incorporating undersown crops and cover-crops (e.g. ADAS Terrington, Warwick University Hunts Mill). Poor cover-crop establishment (e.g. at the ADAS
Smith13

1 and Elm Farm experiment) was experienced as a result of competition from weeds and slow
2 emergence which reduced the benefit obtained\[36\]. Poor cover crop establishment can also be
3 related to competition from the cash crop, adverse weather conditions and low soil temperatures at
4 the time of sowing \[37\]. In particular, the occasional occurrence of poorly performing cover crops
5 presents an important challenge for the long-term sustainability of stockless systems, which rely on
6 keeping the N supplied through biological fixation within the system. Although with careful rotation
7 design, such systems are, in theory, sustainable from a nitrogen management perspective\[38\], in
8 practice these systems appear to be highly vulnerable to poor establishment during the cover-
9 cropping period.

10 The use of cover crops is not limited to organic farms, and higher nitrogen use efficiencies
11 can be obtained by using this method alongside targeted mineral fertiliser application(s) to meet
12 crop demand (and thus increase yield) whilst minimising losses \[4\]. Such tightly controlled systems
13 could represent a suitable approach to developing highly N-efficient production systems, through a
14 combination of organic practices and targeted fertiliser application \[33, 39\]. Similar targeted
15 approaches could still be used on organically-managed land, through the use organic fertilisers with
16 a high N availability (e.g. poultry manure and digestate from slurry based anaerobic digestion) to
17 supply readily available N at key points in the rotation \[5, 40\]. However the application of such
18 sources can increase the occurrence of nitrophilous weeds and their use within organic systems has
19 been questioned as the high N availability leads to feeding the plant instead of the soil \[41\] and a
20 reduction in the amount of organic matter applied in the case of digestate \[42, 43\]. The use of
21 perennial crops can also help to reduce leaching in organic systems through keeping the soil covered
22 and improving N synchrony \[44, 45\], although lower yields, weed susceptibility and pest and disease
23 management issues may limit uptake \[46\]. A lack of technical information, suitable varieties and
24 socioeconomic constraints (e.g. lower consumer demand compared to staple annual crops) also limit
25 the potential for a wider adoption of perennial cropping \[46, 47\].
Organic farmers can also reduce N leaching considerably through improved management of manures and slurries. In particular careful storage, application timing and choice of application method will help to maximise N recovery and minimise losses where slurries and manures are applied [48, 49]. Manure analysis can also improve on farm nutrient use efficiency and help to reduce losses by improving understanding of nutrient supply from organic sources [50]. In some regions, there may be opportunities for farmers to work together to measure the nutrient use efficiency of their systems through a combination of manure and livestock dietary analysis combined with soil sampling [51, 52]. Such participatory approaches can be effective at allowing for improvement options to be identified and for the fine-tuning of production systems. Again the use of such methods is not restricted to organic farms, however the inability of such farms to access manufactured N fertiliser makes the implementation of such measures all the more important for the effective prediction of N supply.

With regard to phosphorus, the modelled systems able to achieve a sustainable balance were using external inputs of rock phosphate to offset losses. Although rock phosphate can help to offset losses, a reliance on this source may result in limited P bioavailability to meet crop demand, due to slow rates of solubilisation [54]. In addition, the use of such a fertiliser clearly does not fit well with the IFOAM organic principles [54] which emphasise the importance of reducing inputs to increase the long-term sustainability of farming systems. Despite this aim, the use of imported manure, straw and/or rock phosphate is common on organic farms, particularly for the supply of P and K [55-57]. In many cases, manure and straw is sourced from conventional farms, which has led to the conclusion that organic farms are being ‘propped-up’ by conventional agriculture, and that as a result a large-scale conversion to organic management would be unsustainable [55-57]. Organic monogastric systems (in particular poultry) also often require imported feed (e.g. soy) to supply protein and essential amino acids [58] and so these systems are supplemented by internationally imported P and K.
The use of household waste and sewage sludge on organic farms could represent a possible solution to reduce the reliance on conventional manure and/or rock phosphate on organic cropping farms, in particular for the sustainable supply of P. Source separated urine also presents an opportunity to apply readily available nitrogen and phosphorus\[^{57, 59, 60}\]. The use of such sources clearly fits with the organic ideal of closing the system as far as possible\[^{42}\], although in this case the ‘system’ expands beyond the farm gate to the consumer\[^{56}\]. Although there have been many cases of household waste recycling on organic farms to supply nutrients to the soil\[^{61-63}\], the use of sewage sludge or urine is strictly prohibited on organic land in Europe, despite the fact that its use seems to be a rational and scientifically supported method of closing the nutrient cycle. Developments in the area of struvite (magnesium ammonium phosphate) recovery from waste water treatment plants could present a possible solution, allowing for application of a refined and slow release mineral fertiliser product, however this product is not currently on the list of permitted fertiliser within the European Commission organic regulation\[^{64}\]. This is an area that needs further scrutiny from a scientifically based perspective as it would appear that historical concerns about the toxic effects of applying urine and sewage sludge to agricultural land may no longer be justified\[^{60, 65}\], although public perception concerning the risks to human health remains an issue in some areas\[^{66}\].

Increasing the co-operative use of manure between (organic) livestock and arable farmers has also been suggested as a possible route for reducing the use of conventional manures on organic land and, within farming in general, the co-operative use of manure between specialised livestock and arable holdings could contribute to the prevention of stockpiling of nutrients and associated losses on intensive livestock holdings\[^{67, 68}\]. In particular this approach has been encouraged in Denmark by a decision to phase out the use of conventional manure and straw on organic land by 2021, partly in recognition of the conflict between principle and practice and partly to prevent the import of genetically modified organisms (GMOs) into organic systems via manure\[^{42}\]. In addition, the transition strategy in Denmark has highlighted the importance of crop rotation design (in particular
to improve understanding on nutrient supply and losses), the development of crop cultivars for low-
nutrient environments, and the development of biogas plants that can run on plant-based feedstock
(in particular grass/clover harvested from leys) in recognition of the limited supply of organic
manure [42, 68].

Potassium deficits were observed across all of the rotations however on many soils, this
does not present an issue given vast reserves of mineral K within parent material which may be
released for plant uptake by weathering [26]. Despite this potential, Holmqvist et al. [70] found that
weathering and bioavailability from the mineral fraction can vary greatly (between 3 and 80 kg K
ha⁻¹ yr⁻¹ on a range of soil types in Norway, Sweden and Scotland) although the modelled predictions
in this study did not take into account the dynamic and localised biological weathering by plant roots
illustrated by x-ray diffraction studies (e.g. Hinsinger et al. [71] in Khan et al. [26]) and the potential
contribution of mycorrhizal fungae to K availability [72]. Nevertheless improved knowledge of site-
specific geochemical and mineralogical data in addition to soil rhizosphere interactions, could be a
useful aid to develop site-specific fertiliser recommendations and nutrient balances [70, 73]. With
respect to mineral reserves of K on this sites assessed in this study, only EFRC, IBERS and ADAS
Terrington could be expected to supply a considerable amount of K from the clay fraction [74],
although sand- and silt-sized muscovite and biotite can also be a major source of plant-available K on
lighter soils [75] and the presence of these and other K-bearing minerals may have offset some or all
of the K offtake at Hunts Mill and the Scottish sites [76]. Despite the high deficits, there was no
apparent trend in available K levels over time at most of the experimental sites considered, although
Hunts Mill showed a slight decline over the course of the study and the K measurements at Tulloch
(taken in the winter) may have been affected by the preceding silage crop [28]. Other studies have
demonstrated a decline in soil P and K levels following conversion to organic management [4, 77] and
positive yield responses have been observed following K applications in long-term experiments in
Australia and the UK [78] and within rice production systems, following several years of intensive
cropping. It is thus important to use nutrient budgets together with soil analysis to help understand the buffering capacity of soils and the management of P and K on individual fields. It should also be remembered that the bank-balance (i.e. supply minus offtake) concept of nutrient management can have major limitations, as N fertilisation in excess of crop removal can lead to a depletion of soil carbon reserves by enhancing microbial decomposition\cite{80,81}. This approach can also lead to an uneconomical fertiliser usage in the case of K that may also have an adverse effects on soil quality and productivity\cite{26} although a range of management factors (e.g. N supply and tillage system) can mask the effect of K fertilisation on crop yield\cite{78}. It has also been suggested that crop yield and quality reductions following K fertiliser application are more likely to be related to K-Mg and K-Ca antagonism in plant uptake and/or K immobilisation in the soil\cite{78}, rather than toxicity in the plant and root zone, or a depletion of the soil structure\cite{26}.

In summary, it is clear from the analysis and modelling within this study that most typical organic cropping systems in the UK will require nutrient inputs to maintain an N, P and K balance. It should also be remembered that most organic farms import fewer nutrients than their conventional counterparts\cite{4,82,83}. Although this approach naturally leads to lower yields, and can lead to lower nitrogen efficiencies within cropping systems\cite{4}, it can also offer a useful way to balance production and environmental concerns\cite{84,85}. For example organic farms often require less fossil energy on a per hectare or kilogram of product basis, in particular through the absence of imported mineral N fertiliser\cite{86}. The use of grass/clover leys and manures for fertility building on organic farms also contributes to greater soil organic carbon concentrations and stocks on organically managed land\cite{87}. In addition organic methods (e.g. use of clover and other legumes to supply N) can be used effectively on conventional farms to increase efficiencies and reduce the environmental impacts of the agriculture sector as a whole\cite{39,88,89}.
Conclusion

An assessment of the NDICEA model has found that it is a useful tool for UK organic farmers to assess the amount of nitrogen supplied and lost through their rotations, although the model should be calibrated to improve accuracy for UK conditions where measured crop N, P, K, soil-N and organic matter values are available. The modelling of the N, P and K balance within organic trials found that in most cases sufficient N is being supplied through biological fixation to support the cropping, although leaching in higher rainfall areas and on lighter soil types may prevent the N from becoming available to the crop(s). The study has also shown that careful rotation design is particularly important within stockless organic systems to reduce losses and avoid the requirements for external inputs as far as possible. Although adequate nitrogen balances are theoretically achievable within stockless organic cropping systems, these systems are highly vulnerable to cover crop failure, poor crop yields and low rates of N fixation within the fertility building period. Negative P and K balances were found for most of the experimental stockless systems and the typical stockless rotations modelled within this study. For phosphorus, the systems seem to be dependent on imported rock phosphate for the maintenance of a small surplus or deficit. The much larger K deficits could be addressed through weathering and subsequent bioavailability of mineral K stocks, depending on site and management conditions. On soils with naturally low K deposits within parent material, K inputs in the form of fertiliser or feed may be required to offset removal, or a reduction in K demanding crops (e.g. potatoes) may be necessary.

N, P and K balances on organic farms are a useful method for exploring the extent to which organic methods can be applied effectively to improve nutrient use efficiencies within agricultural systems. It is likely that the greatest nitrogen use efficiencies can be achieved through a combination of organic production methods (e.g. use of cover crops and clover to supply N) combined with conventional farming practices (e.g. use of mineral fertiliser at key points in the
rotation to meet crop demands fully and increase yields). In addition, the need to obtain minerals from sustainable sources leads to the conclusion that deriving these from suitably defined wastewater treatment could close the nutrient loop for organic farms, but this would require a change in international standards.

Acknowledgements

We would like to thank Geert-Jan van der Burgt for his help with the use of the NDICEA model and the anonymous reviewers whose helpful comments greatly improved the quality of the manuscript. Funding from the Department for Environment, Food and Rural Affairs and the Scottish Government is gratefully acknowledged. The part time PhD for which this study forms a part is supported by an education grant awarded by the Ratcliff Foundation.

References

certified organic and non-organic farms in China, Brazil and Egypt. Nutrient cycling in agroecosystems 87: 455-470.

63. Altieri, M., Companioni, N., Cañizares, K., Murphy, C., Rosset, P., Bourque, M., and Nicholls, C. 1999. The greening of the “barrios”: Urban agriculture for food security in Cuba.

Captions for Tables and Figures:

Figure 1. Approximate location and site parameters for each of the long-term organic trial sites. OM = organic matter content of the soil (% loss on ignition). Rainfall amounts are mean values over the course of the trial(s).

Table 1. Crop Rotations used at each of the experimental sites (C = Carrots, G/C = Grass White Clover, P = Potatoes, RC = Red clover, SBA = Spring barley, SB = Spring beans, SO = Spring oats, S = Swede, SW = Spring wheat, WB = Winter beans, WO = Winter oats, WW = Winter wheat).

Table 2: Typical organic rotations assessed within this study (G/WC = Grass/white clover, RC/G = Red clover/grass, SO = Spring oats, SW = Spring wheat, SB = Spring beans, WO = Winter oats, WW = Winter wheat, WR = Winter rye, P = Potatoes, PE = Peas).

Figure 2. Comparison of the land use by crop type for the typical rotations used within this study to data for 30 ‘Cropping Farms’ collected with the FBS-based Organic Farm Incomes Reports (2010-2012). Error bars = standard error.

Table 3. Comparison of the error found in calculating soil N (kg/N/ha) produced by uncalibrated and calibrated runs of NDICEA using data collected for the rotations applied at each experimental site (RMSE = Root Mean Square Error across all measurements, n = number of soil mineral N samples used for calibration of the model).
Table 4. Nutrient balance of stockless organic rotations/trial sites expressed in kg/ha/year.

Table 5. Nutrient balance of stocked organic rotations/trial sites expressed in kg/ha/yr.

Table 6. Nutrient balance of typical organic rotations/trial sites expressed in kg/ha/yr. se = standard error (se is only calculated for N, P and K balances are unaffected by the site conditions).
Table 1: Crop Rotations used at each of the experimental sites (C = Carrots, G/C = Grass White Clover, P = Potatoes, RC = Red clover, SBA = Spring barley, SB = Spring beans, SO = Spring oats, S = Swede, SW = Spring wheat, WB = Winter beans, WO = Winter oats, WW = Winter wheat):

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Course</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFRC A</td>
<td></td>
<td>RC</td>
<td>WW</td>
<td>WW</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFRC B</td>
<td></td>
<td>RC</td>
<td>P</td>
<td>WW</td>
<td>WO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFRC C</td>
<td></td>
<td>RC</td>
<td>WW</td>
<td>WB</td>
<td>WW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADAS Terrington</td>
<td></td>
<td>RC</td>
<td>RC</td>
<td>P</td>
<td>WW</td>
<td>SB</td>
<td>SW</td>
<td>RC</td>
<td>P</td>
<td>WW</td>
<td>SB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warwick, Hunts Mill</td>
<td></td>
<td>SB</td>
<td>G/C</td>
<td>G/C</td>
<td>P</td>
<td>C</td>
<td>SBA</td>
<td>G/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warwick, Hunts Mill</td>
<td></td>
<td>P</td>
<td>C</td>
<td>SB</td>
<td>P</td>
<td>C</td>
<td>SBA</td>
<td>G/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRUC - Tulloch T50</td>
<td></td>
<td>G/C</td>
<td>G/C</td>
<td>G/C</td>
<td>SO</td>
<td>S</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRUC - Tulloch T67</td>
<td></td>
<td>G/C</td>
<td>G/C</td>
<td>G/C</td>
<td>SO</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRUC - Woodside W37</td>
<td></td>
<td>G/C</td>
<td>G/C</td>
<td>SO</td>
<td>P</td>
<td>SO</td>
<td>G/RC</td>
<td>S</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRUC - Woodside W50</td>
<td></td>
<td>G/C</td>
<td>G/C</td>
<td>G/C</td>
<td>SO</td>
<td>P</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IBERS - Ty Gwyn**</td>
<td></td>
<td>G/C</td>
<td>G/C</td>
<td>G/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Typical organic rotations assessed within this study (G/WC = Grass/ white clover, RC/G = Red clover/grass, SO - Spring oats, SW = Spring wheat, SB = Spring beans, WO = Winter oats, WW = Winter wheat, WR = Winter rye, P = Potatoes, PE = Peas)

<table>
<thead>
<tr>
<th>Rotation</th>
<th>Course</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stocked 'complex'</td>
<td>G/WC</td>
<td>G/WC</td>
<td>G/WC</td>
<td>WW</td>
<td>WO</td>
<td>RC/G</td>
<td>RC/G</td>
<td>P</td>
<td>SB</td>
<td>SW</td>
<td></td>
</tr>
<tr>
<td>Stocked 'simple'</td>
<td>RC/G</td>
<td>RC/G</td>
<td>WW</td>
<td>P</td>
<td>WW</td>
<td>WR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockless 'complex'</td>
<td>RC/G</td>
<td>RC/G</td>
<td>P</td>
<td>WO</td>
<td>SB</td>
<td>SW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockless 'simple'</td>
<td>RC/G</td>
<td>WW</td>
<td>PE</td>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Comparison of the error found in calculating soil N (kg/N/ha) produced by uncalibrated and calibrated runs of NDICEA using data collected for the rotations applied at each experimental site (RMSE = Root Mean Square Error across all measurements, n = number of soil mineral N samples used for calibration of the model)

<table>
<thead>
<tr>
<th>Site / experiment</th>
<th>n</th>
<th>RMSE uncalibrated model</th>
<th>RMSE calibrated model</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFRC A</td>
<td>7</td>
<td>48.8</td>
<td>16.6</td>
</tr>
<tr>
<td>EFRC B</td>
<td>7</td>
<td>57.6</td>
<td>48.7</td>
</tr>
<tr>
<td>EFRC C</td>
<td>7</td>
<td>30.4</td>
<td>21.5</td>
</tr>
<tr>
<td>ADAS Terrington</td>
<td>10</td>
<td>10.9</td>
<td>6.3</td>
</tr>
<tr>
<td>Warwick, Hunts Mill Area 1 with FYM</td>
<td>12</td>
<td>47.7</td>
<td>44.1</td>
</tr>
<tr>
<td>Warwick, Hunts Mill Area 6 with FYM</td>
<td>12</td>
<td>22.3</td>
<td>19.3</td>
</tr>
<tr>
<td>Warwick, Hunts Mill Area 1 no FYM</td>
<td>12</td>
<td>41.0</td>
<td>38.8</td>
</tr>
<tr>
<td>Warwick, Hunts Mill Area 6 no FYM</td>
<td>12</td>
<td>23.7</td>
<td>18.6</td>
</tr>
<tr>
<td>SRUC Woodside W37</td>
<td>30</td>
<td>12.8</td>
<td>11.6</td>
</tr>
<tr>
<td>SRUC Woodside W50</td>
<td>30</td>
<td>14.1</td>
<td>11.8</td>
</tr>
<tr>
<td>SRUC Tulloch T50</td>
<td>5</td>
<td>22.0</td>
<td>18.9</td>
</tr>
<tr>
<td>SRUC Tulloch T67</td>
<td>5</td>
<td>13.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Ty Gwyn</td>
<td>2</td>
<td>8.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Table 4: Nutrient balance of stockless organic rotations/trial sites expressed in kg/ha/year

<table>
<thead>
<tr>
<th></th>
<th>EFRC A</th>
<th>EFRC B</th>
<th>EFRC C</th>
<th>ADAS</th>
<th>HuntsMill</th>
<th>HuntsMill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>P</td>
<td>K</td>
<td>N</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fertiliser applied</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>Deposition</td>
<td>20</td>
<td>4</td>
<td>20</td>
<td>4</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Biological fixation</td>
<td>44</td>
<td>59</td>
<td>59</td>
<td>84</td>
<td>42</td>
<td>21</td>
</tr>
<tr>
<td>Total supply</td>
<td>64</td>
<td>4</td>
<td>79</td>
<td>4</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Volatilisation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Denitrification</td>
<td>47</td>
<td>54</td>
<td>44</td>
<td>26</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>Leaching</td>
<td>57</td>
<td>57</td>
<td>52</td>
<td>28</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Product Removal</td>
<td>36</td>
<td>6</td>
<td>63</td>
<td>17</td>
<td>32</td>
<td>55</td>
</tr>
<tr>
<td>Total loss</td>
<td>140</td>
<td>6</td>
<td>174</td>
<td>17</td>
<td>32</td>
<td>151</td>
</tr>
<tr>
<td>Nutrient balance</td>
<td>-76</td>
<td>-95</td>
<td>9</td>
<td>-28</td>
<td>-72</td>
<td>-6</td>
</tr>
<tr>
<td>Change in soil organic N</td>
<td>-93</td>
<td>-100</td>
<td>-60</td>
<td>0</td>
<td>-1</td>
<td>-13</td>
</tr>
<tr>
<td>Change in soil mineral N</td>
<td>17</td>
<td>5</td>
<td>-12</td>
<td>-17</td>
<td>-6</td>
<td>-1</td>
</tr>
</tbody>
</table>
Table 5: Nutrient balance of stocked organic rotations/trial sites expressed in kg/ha/yr

<table>
<thead>
<tr>
<th></th>
<th>Tulloch T50</th>
<th>Tulloch T67</th>
<th>Woodside W50</th>
<th>Woodside W37</th>
<th>Hunts Mill Area 1</th>
<th>Hunts Mill Area 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertiliser applied</td>
<td>63</td>
<td>17</td>
<td>63</td>
<td>83</td>
<td>22</td>
<td>81</td>
</tr>
<tr>
<td>Deposition</td>
<td>12</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Biological fixation</td>
<td>57</td>
<td>1</td>
<td>0</td>
<td>112</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total supply</td>
<td>132</td>
<td>18</td>
<td>69</td>
<td>204</td>
<td>24</td>
<td>88</td>
</tr>
<tr>
<td>Volatilisation</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Leaching</td>
<td>26</td>
<td>30</td>
<td>49</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Product Removal</td>
<td>59</td>
<td>17</td>
<td>96</td>
<td>57</td>
<td>36</td>
<td>188</td>
</tr>
<tr>
<td>Total loss</td>
<td>95</td>
<td>17</td>
<td>96</td>
<td>98</td>
<td>36</td>
<td>188</td>
</tr>
<tr>
<td>Nutrient balance</td>
<td>37</td>
<td>1</td>
<td>-27</td>
<td>106</td>
<td>-12</td>
<td>-100</td>
</tr>
<tr>
<td>Change in organic N</td>
<td>32</td>
<td>101</td>
<td>43</td>
<td>6</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Change in mineral N</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 6: Nutrient balance of typical organic rotations/trial sites expressed in kg/ha/yr. se = standard error (se is only calculated for N, P and K balances are unaffected by the site conditions)

<table>
<thead>
<tr>
<th></th>
<th>Stocked complex</th>
<th>Stocked simple</th>
<th>Stockless complex</th>
<th>Stockless simple</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>se (+/-)</td>
<td>P</td>
<td>K</td>
</tr>
<tr>
<td>Fertiliser applied</td>
<td>32</td>
<td>0</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Deposition</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>Biological fixation</td>
<td>142</td>
<td>9</td>
<td>117</td>
<td>9</td>
</tr>
<tr>
<td>Total supply</td>
<td>190</td>
<td>9</td>
<td>12</td>
<td>28</td>
</tr>
<tr>
<td>Volatilisation</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Denitrification</td>
<td>21</td>
<td>2</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>Leaching</td>
<td>35</td>
<td>9</td>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>Product Removal</td>
<td>79</td>
<td>0</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>Total loss</td>
<td>137</td>
<td>8.7</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>Nutrient balance</td>
<td>53</td>
<td>7</td>
<td>-1</td>
<td>-9</td>
</tr>
<tr>
<td>Change in organic N</td>
<td>51</td>
<td>8</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>Change in mineral N</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>